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ABSTRACT

Systems have biases. Their interfaces naturally guide a user toward
specific patterns of action. For example, modern word-processors
and spreadsheets are both capable of handling word wrapping, check-
ing spelling, and calculating formulas. You could write a paper in
a spreadsheet or could do simple business modeling in a word-
processor. However, their interfaces naturally communicate which
function they are designed for. Visual analytic interfaces also have
biases. We outline why simple Markov models are a plausible tool
for investigating that bias, even prior to user interactions, and how
they might be applied to understand a priori system biases. We also
discuss some anticipated difficulties in such modeling and touch
briefly on what some Markov model extensions might provide.

Index Terms: H.5.2 [Information Systems]: Information Interfaces
and Presentation—User Interfaces; H.1.2 [Information Systems]:
Models and Principles—User/Machine Systems

1 INTRODUCTION

Does all data in an application have an equal chance of being seen?
The answer to this question is likely “no”, and that is not necessarily
a bad thing. We deliberately influence what is visible and what is
not based on many measures. In fact, we rely on such imbalances as
part of the data exploration process to keep the information content
tractable for human memory and reasoning [14]. Any time some-
thing “just pops out” or is “obvious” in a display, there is an element
of bias at play. However, does the interface naturally bias in the
direction of tasks it was deigned to support? How much of that
bias is inherent in the interface, and how much is the result of the
ways the interface interacts with a specific dataset? How much is
the result of the user crafting the interface for personal needs and
interests? This paper proposes Markov modeling as an approach to
begin teasing apart the sources of bias in visual analytic systems.

Friedman and colleagues defined bias in computers systems as a
slant which produces systematic and unfair discrimination against
certain individuals or groups, particularly when that discrimination
is paired with unfair outcomes [9, 10]. They defined three types of
biases: pre-existing, technical, and emergent. Although we disagree
that bias only produces unfair outcomes, we find these classes useful
for thinking about bias that can estimated about the system with and
without user interactions. Pre-existing bias reflects how a system
embodies cultural norms, practices, and attitudes that exist in the
environment in which the system was developed, programmed, or
deployed. Pre-existing biases in visual analytics might reflect the
culture of the company or research group that developed the system.
They could be as simple as the default interface elements, like default
color schemes or variable placements on axes.

Other system biases are technical biases. These arise from tech-
nical constraints or considerations in the design process, such as
choice of hardware or peripherals, which shape the capabilities of the
system. Technical bias in visual analytic systems can influence the
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initial layout, the available algorithms, or the options for interaction
techniques. Interaction options have implications for the amount
of information that needs to be available on screen. For example,
hover and roll-over functions may not be enabled without a mouse
or touchpad. Without a hover option, tool tips may not be possible,
so information that might have been available on demand may need
to be readily available in other ways or on the screen at all times. Or
the burden can be placed on the user to query for the information;
however, if the user is inexperienced with the system or poor at
formulating queries, then some information may not be queried and
so may not be seen. Another form of technical bias can be seen in
the specific algorithms provided in a tool. They are often chosen
based on expected performance on reference hardware for expected
datasets. As hardware advances, previously intractable algorithms
can be implemented, and as new datasets are approached with a tool,
different algorithms may be preferred.

A third class of system biases are emergent biases that result
from the interactions of users with the system. These are very much
of interest to visual analytic systems which are meant to facilitate
extensive interactions for data exploration [3]. However, we suspect
that emergent biases can only be measured from user interactions
with the system. This is because each user has unique biases from
attitudes, experience, and task goals that will shape the emergent
biases. Whether the goal of measurement is online or post hoc bias
assessment, it is hard to predict emergent biases in the absence of
specific user characteristics and interaction behavior data.

Thus, the goal of this paper is to propose a framework by which
we can measure the biases of an interface from the design of the sys-
tem, including choices of visualizations and interactions. This may
include elements of both technical and pre-existing biases, which do
not require the collection of user interaction data for assessment. Of
particular interest at present is predicting if the system design will
steer users into system states where information is systematically
unavailable or hard to recover, which will bias their exploratory rea-
soning and inference processes. Identifying the biases a priori helps
(1) identify when and which biases are important, (2) compensate
for biases when they hinder task performance, and (3) constructively
employ biases when they help.

2 RELATIONSHIP TO ANALYTIC PROVENANCE

Modeling a priori system bias provides an important complement
to analytic provenance modeling. The goal of provenance modeling
is to leverage the sequence of user actions to characterize a user’s
analytic process [11, 16]. Xu and colleagues [16] argue that there
are two important uses for analytic provenance: users can plan fur-
ther analyses, and systems can suggest related but unexamined data.
If captured and interpreted automatically, rather through intensive
manual annotation, a mixed-initiative system could incorporate an-
alytic provenance into intelligent recommendations, as illustrated
by Endert, Fiaux, and North [6], Cook and colleagues [2]. Notably,
Dabek and Caban [4] use captured actions to automatically build
Markov-model-like automata that form the basis of their intelligent
recommender system.

Additionally, when used post hoc, provenance enables analysts
to study their own and others’ processes. Toward this end, there
have been efforts to develop visualizations for showing analytic
provenance. GraphTrail [5] uses a graph visualization approach
where the states of the analytic system are nodes, and the links
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Figure 1: Series of images of a Gapminder “Bubbles” view in
sequential states: (a) initial 2015 data, (b) select India, (c) hover
Switzerland. Images from gapminder.org, CC-BY license.

illustrate the analysts transition path between the visualizations.
Those links could be enriched by identifying the types of actions
they represent in the analytic process, using the catalog of activity
developed by Gotz and Zhou [11], for example.

From a system design perspective, analytic provenance analysis
allows designers to inspect how design choices and interface ele-
ments were used throughout task completion. Our proposed Markov
chain model for interface and exploration biases offers a predictive
analysis for what might happen. This analysis can be conducted
before the system is given to users; it can be engaged early and
often in the design process. Importantly, our proposed interface and
exploration bias computations are common across users, because
they are about the system structure not the specific user interactions

Figure 2: Gapminder map interface, dataset is the same as Fig. 1a.

or tasks. Thus, the emergent system biases introduced by the user
interactions with the system may be teased apart from the other
system biases by leveraging a combination of Markov-chain-based
interface analyses and analytic provenance modeling.

Analytic provenance can then capture what a user actually does
with a system, and the two can be compared. We propose that
additional modeling the system absent user interactions targets mea-
suring the potential biases in the system that would influence the
ways a user could or should use the system. Technical or pre-existing
biases may create some systems states that are not useful or would
strongly sway the analytic process. While we can observe if or
when analysts navigate into those states using analytic provenance,
a priori modeling may help us to predict or prevent states unhelpful
to the sensemaking process, or that might be compounded by user
biases to create strong emergent biases.

3 MARKOV MODELS

We propose that Markov chains can be used to model user interfaces
and reveal potential biases in those interfaces. That is, we can model
interface changes as a probabilistic sequence through a system’s
state space. We focus on the visual states that can be observed,
leaving aside state changes that are only based on hidden internal
representation changes.

A general Markov model is a statistical process that can be repre-
sented as a sequence of states and transition probabilities between
those states (i.e., a state machine). Formally, let Si for i = 1, . . . ,n
be a set of n possible states, and we define P(Si|S j) = p ji as the
transition probability from state S j to state Si. A sequence of states
may be thought of formally as {Si,S j,Sk,Si, . . .}, where a repeated
state, like Si represents re-visiting a state. All Markov models adhere
to the Markov property, which means transitions only depend on the
current state (also called being “memoryless”). We represent this as
the state of the system at time t being only a function of the state at
time t−1, P(St |{S1,S2, . . . ,St−1}) = P(St |St−1).

The state machine model is the basis for other Markov processes.
For example, a Markov chain is a path through a Markov model
[13]. Hidden Markov models are Markov models that maximize
the probability of observed chains when the underlying state space
and probabilities are not known [1]. Markov models are “simple”
in that they are amenable to many different kinds of analyses that
yield useful information. Therefore, building a Markov model that
faithfully reproduces system behaviors can lead to useful insights
about expected behaviors under other circumstances.

The sequence of states in a Markov chain can represent a se-
quence of states the visual interface can go through. Those state
changes maybe driven by direct user actions, streaming data updates,



or mixed-initiative analysis as it makes recommendations. The com-
plete set of states in the Markov model is comprised of the union of
all valid chains. This concept is illustrated in Figure 1. We note that
a display changes can result from a change in either the content/data
(e.g., the data is “played” through time in Gapminder) or a change
in the layout or design parameters (e.g., the visualization is reconfig-
ured in the right-side panel). To supply the transition probabilities,
and thereby complete the Markov model, we assume that possible
states of the interface are states in the Markov model and transition
probabilities are derived from the screen presence of interface ele-
ments. A user session is a chain, drawn from the probability space
defined by the model. Analyzing the Markov model state machine
provides insight into possible and probable user session patterns.

We can gain insight about potential system biases, pre-existing
and technical, by examining the structure of connections between
and understanding the relative likelihoods of interface states. For
example, some states may not be reachable without a specific se-
quence of user actions, making them less likely to occur. Other
states may have likelihoods that change over time because of certain
design or algorithm choices. Still others may be dependent on the
default settings (the initial conditions) of the system. Modeling the
user interface independent of actual user actions provides a basis for
comparing interfaces to each other. Additionally, examining user
interface actions in light of interface bias can tell you if observed
biases came from the tool or from the operator. It allows us to
distinguish the potential technical and pre-existing biases from the
emergent biases in interactive visual analytic systems.

4 INTERFACE MODELS

There are at least two conditions to interface modeling: with and
without data loaded. With a dataset loaded, we propose to construct
the Markov model with three key features: (1) each link is a possible
action; (2) each node is an interface state that results from an action,
and (3) links are weighted proportional to the target area on the
screen. The above procedure captures the essential idea, but it
probably needs to be tempered in some cases. Figure 3 illustrates
some of the network shapes that result from applying this process
by hand to parts of the Gapminder “Bubbles” interface. Linear
dependencies are evident, showing that moving large distances in
time incurs many step costs, biasing the user to make comparisons
in near neighborhoods.

Applying the same procedure to the Gapminder “Map” interface
(Figure 2) yields similar patterns BUT with different weights. For
example, in the “Bubbles” interface it is possible to directly select the
Switzerland bubble (Figure 1c). However, in the map, Switzerland
is completely occluded by neighboring data. A data-dependent
analysis of the interface would directly reveal this bias against such
data points by examining the weights derived from screen space.
Similarly, data-dependent analysis could reveal if the bias toward
particular data points is proportional to bias in the dataset.

We have only done a partial analysis of the Gapminder interfaces,
but we expect similar patterns to be components of full-application
analysis. Just observing structural patterns, these patterns can illus-
trate potential biases. For example, isolated groupings show areas
that may be difficult to move between, a bias for staying with the cur-
rent representation. Moving to more algorithmic analysis, it would
be possible identify unreachable and difficult-to-access data.

Modeling with target-area proportional weights is at least partially
justified by the Shannon entropy interpretation of Fitts’ Law [8]. In
brief, if more (or more unlikely) interface actions are required to
reach a state, that state is less likely to be encountered by chance.
A sequence of user actions can be viewed as a string that encodes
the address of an interface state. In terms of information, if bits of
information must be supplied to “address” a state, the likelihood of
an error increases. If there are more redundant paths, it is analogous
to address encoding redundancy, and the state is more likely.

The Markov chain conceptualization for data-dependent biases
derives the transition probabilities, p ji, from this weighting schema.
We are capturing biases Where the transition probabilities shape
Markov chains to end up in particular part of the state space or makes
certain transitions more likely than others. With data in the system,
we are measuring some of the technical biases. The data repre-
sentations reflect the results of the underlying encoding/embedding
schemes and choice of machine learning or analytic algorithms.
These technical choices can bias the data available in the system.
Pre-existing biases may come into play if the system is applied to
data types for which it was not designed (e.g., applying numerical
techniques to ineffectively encoded text data), because the norms and
practices will not properly apply. But predominantly, data-dependent
Markov chains capture technical system biases.

This preliminary analysis makes it evident that the basic proce-
dure naı̈vely applied yield combinatorial explosion of states. For
example, sequential data selection is done when picking specific
countries in the Gapminder “Bubbles” chart. A full model is a lattice
of all possible combinations of selections (A, B, C, A&B, A&B&C,
A&C, B&C, etc.). For all but trivial examples, this is likely to be
computationally intractable. Tempering full data dependence is prob-
ably necessary, and the focus of the next section. In truth, a mixture
of data-dependent and data-independent modeling is likely to yield
the best tractable models. Some of the simplifications used in Dabek
and Caban [4] used to reduce the impact of redundant combinations
may also have analogous simplifications for this a priori modeling.

Data Independent Modeling

Interesting patterns in the interface may be revealed by ignoring
details of the data presentation. In the data-independent scenario,
the resulting model is simplified but necessarily more abstract. It is
constructed in the same way as the data-dependent bias case but with
two simplifications. First, all interactions that directly involve the
data are collapsed into a single link by type. For example, instead
of a selection-related link for each data point, there is a single data-
selection link. This necessarily implies that data-related states are
also compressed together. The general transformation is shown in
the left column of Figure 3. Second, because we are no longer
considering the data representation, we can no longer use screen-
space to weight the links. Instead, we propose to make all links
that leave a node equally likely. This is termed a regular Markov
chain, with the transition probability matrix P =

[ 1
n
]
. This initial

assumption provides a baseline against which we can study a system.
Data-independent Markov chains have transition probabilities

that are regular or are shaped by the initial conditions of the system.
If the transition probabilities are dependent on initial conditions, we
are capturing a pre-existing bias in the system. That is, the assump-
tions made by the designer as to default settings produced a bias
toward data availability that changed when those default settings
were adjusted to some alternative initial configuration. Additional
pre-existing biases are captured in the overall design elements in
the display or choices of representation implemented, because all
reflect some methodological attitude or cultural norm for that sys-
tem. Technical biases can also be revealed if the data-independent
display incorporates structures output from some internal algorithm,
or the structure reflects technology choices on which the system is
implemented. But we argue that data-independent Markov chains
serve to capture pre-existing system biases.

Modeling an interface with a specific dataset represented it is
likely to be more directly actionable than the data-independent
model. However, the models are likely to be large relative to the
data-independent case because many common interface patterns
are combinatoric in the elements of the dataset. Working with the
data-independent model has the effect of reducing the size the model
significantly, but it makes the results more abstract and thus more
difficult to interpret.
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Figure 3: Markov model structures from Gapminder “Bubbles” regions noted in Fig. 1a. The difference between the data-dependent and
-independent cases is evident in the difference of complexity between the rows.

5 DISCUSSION

Classic Markov modeling is a “memory free” technique. It only
takes the current state into consideration when making a transition.
However, data exploration necessarily includes human memory [14].
Modeling multi-step memory with static Markov models is cum-
bersome at best (and practically impossible in combinatoric cases).
However, compressing combinatoric cases into abstract chains (as
discussed earlier) can be seen as a simple memory model. A sim-
ilar compression technique might be used to model a simple form
of memory. An alternative to combinatoric compression of states
would be to use a model that includes memory in a structured way.
Dynamic Markov, Push-down automata, and RAM-based automata
(with limited RAM) are also be viable options. Each has an finite
state space and a well-developed field of analysis.

Our proposed weighting scheme is simple, and may not be suffi-
cient to illuminate some bias patterns. There are some interesting
challenges. For example, in the data-dependent construction, the
size-based weighting is derived from Fitts’ Law. However, Fitts’ Law
not account for convention or attention. Therefore, some interface
elements may be relatively large by convention but the probability
that they will be interacted with is not proportional to their size. For
example, menu bars have a size and position dictated by the interface
guidelines of the platform, and that may be significantly larger than
the representation of a single data point. Capturing such differences
in the interaction probabilities requires reaching beyond Fitts’ Law
for transition probabilities.

In the data-dependent Markov modeling, only the screen real-
estate is used to model direct data interactions. Logical extensions
include using visual similarity (along many retinal dimensions) to
up- or down-weight items. This could be extended further with
a dynamic Markov model, so weights change based on what has
been visited before. Proper dynamic weighting requires knowledge
of the task as well as the visual representation. It makes sense to
up-weight similar things when the retinal variables correspond to the
desired task but to (possibly) down-weight similar items when the
retinal variable does not have bearing on the task. Also, exploration
versus verification probably have different interaction patterns. Such
modeling may be achieved using a Markov Decision Process. In
addition to a transition probability, the model is extended with a
payoff matrix and a “discount” factor. Payoffs are provided when
a specific transition is taken. The discount factor determines how
important immediate versus future expected payoffs are weighted.
Decisions are still based on the information observable in the current
state, but the probability of a transition is made a factor of the base

probability, the payoff, the expected future payoff, and the discount
factor. Payoff and discount factors can be adjusted to model different
goal-directed behaviors. Similar dynamic re-weighting is done in
Dabek and Caban [4], captured in their “ideology” factors.

Analytic provenance models suggest another approach to Markov
modeling. In particular, if a provenance tracking system records
information about the state of the interface, we could use a hidden
Markov model to derive the Markov chain of the original inter-
face state space [7]. This might be helpful in cases where we have
incomplete information about the structure or state space of an inter-
face. This inference process could leverage existing graph modeling
systems for analytic provenance, as in GraphTrail [5], to interpret
the hidden model states. This approach bears some similarity to
Jankun-Kelly’s [12] P-set Model of visualization exploration. He
defines two key concepts. A P-set is a set of parameters that define a
visualization system, and visualization transformation is an opera-
tion on the P-set that creates a particular visualization view. Each
set of parameter values (P-set) defines a state space with weighted
connections (transformations) between the states. The difference
between our Markov chain approach is that our links between the
states quantify the probability of moving between states, rather than
defining the parameter transformations themselves. An interesting
direction for future work is to relate the transformations to transition
probabilities between parameter states to capture emergent bias.

6 CONCLUSION

We note that methods for measuring information content in a visual
analytic system remain an open challenge for the field [15]. Such
measures are important for overall evaluation of systems, particularly
for calibrating our expectations for how much information user’s
may be able to extract from a system. We propose that measurement
of information availability and the interface biases that may shape
that information availability should be modeled in systems before
they are put into human-in-the-loop evaluations. Markov models, as
proposed herein, provide a promising direction for conceptualizing
the state space of a visual analytic system and understanding system-
level biases through the transition probabilities over the state space.
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