
Towards a Bayesian Model of Data Visualization Cognition
Yifan Wu*

UC Berkeley
Larry Xu†

UC Berkeley
Remco Chang ‡

Tufts University
Eugene Wu §

Columbia University

ABSTRACT

Data visualizations are often used to assist decision making with
probabilistic data. Different cognitive biases can affect the accuracy
of user insights gained during the visual analytics process. However,
evaluating bias in visualization usage is challenging and difficult
to quantify. In this paper, we propose a Bayesian inference model
based on cognitive science research to fill this gap. We outline the
details for this model and the evaluation steps, including an end-
to-end demonstration experiment that we performed. The results
provide initial validation for using a Bayesian inference model to
quantitatively measure bias in visual analytics.

1 INTRODUCTION

Data visualization is increasingly an integral part of data-driven
decision making, and much research effort has been put into un-
derstanding aspects of cognition around visual data analytics (e.g.,
[5, 11, 21, 22, 27] to name a few). However, despite the effort, cogni-
tive bias remains difficult to measure and detect quantitatively. Past
studies have focused on graphical perceptions, which have proven
critical to guide the design of effective visualizations [6]. In contrast,
with few exceptions (e.g. [26]), less work has been done on how
visualization designs influence users’ beliefs.

Intuitively, detecting such influence is simple. As shown by
Pandey et al. [26], to detect a user’s change in belief after viewing a
visualization, one would measure people’s belief prior to and after
seeing the visualization. This structure of measuring beliefs “prior to”
and “after” viewing a visualization strikes a similarity to the concept
of Bayesian statistics where “priors” and “posteriors” are used to
measure the probability of the occurrence of an event. As such, a
potential mechanism to detecting cognitive bias can be viewed as
a measure of how much a visualization changes a person’s beliefs
beyond the Bayesian posterior.

The advantage of this approach is that one can quantify changes
in a person’s belief state. In the context of visualization, this means
that we can model how and to what degree a visualization changes
a user’s beliefs, and create a shared basis to compare across visual-
ization designs. For example, when evaluating how a visualization
changes a user’s mind, the difference between the expected Bayesian
posterior of a user’s belief and the measured user’s belief could quan-
tify the bias induced by the visualization design.

Researchers in cognitive science have been studying whether
human cognition could be modeled with Bayesian statistics and
found that a probabilistic framework holds the promise of a com-
plete theory of learning—able to predict how beliefs change with
observations [10, 12, 13]. Further more, many “irrational” behaviors
could be modeled as extensions to the Bayesian model [1,20,28], so
not only could cognitive biases be detected, but also modeled in a
principled way.
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In this paper, we demonstrate the use of Bayesian inference to
model and measure the change of people’s beliefs as the degree by
which it deviates from Bayesian posteriors. We discuss how to set
priors for participants, compute the theoretical Bayesian posterior,
and elicit the posterior from participants. We use a running visual
analytics example to explain the set up of a Bayesian model, and
a demonstration experiment that we piloted to illustrate how the
model can be applied to quantitatively measure changes in beliefs.
Lastly, we discuss ways to extend the basic Bayesian inference
model introduced in this paper with the rich literature from cognitive
science to capture different cognitive biases.

This work shows potential promise for a more robust way to
model and quantify cognition of visual analytics. We hope to inspire
discussion on Bayesian inference modeling methods for cognitive
bias studies.

2 BACKGROUND

Increasingly, diverse evaluations of the cognition of visualizations
are being done by the information visualization community, ranging
from type and amount of insights generated [24], how memorable
different visualization designs are [3], how trustworthy sampled data
seem [7], statistical perception and understanding [4, 15], and data
recall/comprehension [18]. We present a brief overview of their
approaches to motivate the need for a general, quantifiable model,
and why Bayesian inference is a good candidate.

Liu et al. investigated interaction in information visualization
as actively constructing and manipulating mental models, for three
primary purposes: external anchoring, information foraging, and
cognitive offloading [22]. In a similar spirit, we want to explore
ways to model finer grained statistical understanding of the data
being visualized.

Pandey et al. compared the persuasive power of charts versus ta-
bles [26]. The authors described different ways people are persuaded
and not persuaded, suggesting that it is difficult to isolate the effect
of the medium and the effect of the topic, and that persuasion has
many facets and succinct quantitative representations are difficult.
This motivates our work to seek a way to address these challenges.

Kim et al. found that visualization of the difference between
the actual outcome and people’s expectations can enhance recall,
and hints at the modeling of the process as participants making
inferences on existing priors [18].

Fisher et al. evaluated the effect of sampling on user trust, sug-
gesting that direct visual representation of uncertainty, e.g. error
bars, could inspire enough trust for the system to be useful [7]. This
suggests that users are incorporating probabilities into their reason-
ing process. Zhao et al. modeled interaction in visual analysis as
hypothesis testing, and provide tools to prevent spurious discoveries
caused by the presence of multiple hypotheses [32]. Some have ar-
gued for a Bayesian analysis approach as opposed to the traditional
hypothesis testing method for its flexibility and ability to incorporate
new information cumulatively [19]. More recently, Kangasrääsiö
et al. have propose using approximate Bayesian computation to
parametrize cognitive model from behavioral data [17].

From these recent research, a trend of probabilistic modeling
of the visual analysis process is emerging. We find illuminating
research from cognitive science and propose a candidate model:
Bayesian inference. Bayesian reasoning is not new to information
visualization—researchers have investigated whether visualizations



help improve human Bayesian reasoning, [4, 23, 25]. Not only is
Bayesian reasoning challenging for people, research have found
even understanding uncertainty is challenging [15].

Despite these issues, modeling human cognition with Bayesian
models has been pioneered by cognitive science researchers [10, 12,
13]. Modeling the analysis as Bayesian updates does not require
explicit human Bayesian reasoning—instead of giving participants
equations to calculate, they are expected by to answer based on
intuition.

Griffiths and Tenenbaum performed experiments that revealed for
everyday activities and found that humans are surprisingly consistent
with real world statistics and the Bayesian model [14], contrary to
previously well established theories by Tversky and Kahneman [30].
More broadly, they have been able to successfully use the model
to explain previous findings of modeling word learning, property
induction, and causal learning, and irrationality, such as seeking
confirmation and anchoring [13]. Other work by Bayesian modelers
have also suggested ways to elicit priors from people [29], which
makes the modeling more practical.

These emerging theories and tools for modeling has, to the best
of our knowledge, not yet been applied to information visualization
and visual analytics. Much of current research suggest that modeling
the visual data analysis process is ripe for a Bayesian investigation.
The goal of this paper is to explore whether it is possible to use
Bayesian inference to model the visual analytic process, in the hope
of providing a quantitative and expressive model for understanding
and measuring cognitive bias for visual data analytics.

3 BAYESIAN MODELING OF BELIEFS

Bayes’ law describes the probability of an event, based on previous
knowledge of the event and data points seen. It is stated as

P(A|B) = P(B|A)P(A)
P(B)

where A and B are two events, and P(B|A) is the likelihood of B
happening conditioning on A being true. P(B) can be evaluated
by marginalizing over alternative events to A, denoted A′, without
loss of generality, as the cases where A did not happen: P(B) =
P(B|A)P(A)+P(B|A′)P(A′). This yields the following equation:

P(A|B) = P(B|A)P(A)
P(B|A)P(A)+P(B|A′)P(A′)

(1)

While the above equation seem far removed from visualizations,
it is possible to map the viewing of data visualization as a Bayesian
inference process: treat B as the event of seeing a visualization of cer-
tain data, and A as an outcome which the visualization user has some
belief over. Then setting B= viewing a visualization of a set of data
and A = belief of outcome in Equation (1) derives an analytical so-
lution to the Bayesian posterior.

Concretely, we introduce a running example for the rest of the
paper, illustration the modeling, experiment design, and result anal-
ysis. Take a fairly common business scenario where people evaluate
whether a company is doing well based on viewing the visualization
of the company’s sales data. In the real world, the considerations
may be complex, but for the sake of the experiment, we define two
kinds of companies: one with a 60% probability of sales increasing
month to month (hereafter referred to as “strong”), and another with
40% (“weak”).

Based on the sales data, we could formulate an analyt-
ical solution to the Bayesian posterior using Equation (1)
by supposing A = company is strong, A′ = company is weak,
and B = visualization(sales data). P(company is strong) and
P(company is weak), shown as P(A) and P(A′) in Equation 1, are
the known as the “priors”. These two values represent the viewer’s
prior belief that a company would be strong or weak respectively.

Determining the priors is considered one of the key challenges in
using Bayesian models. We will discuss methods for setting (or
eliciting) a viewer’s prior beliefs in Section 3.1 and demonstrate in
Section 4.

The conditional probability of seeing a visualization
of a sequence of sales numbers for a strong company,
P(visualization(sales data)|company is strong) (which is P(B|A)
in Equation (1)) can be calculated based on the sales data and
the likelihood of increase/decrease month to month. Since the
sequence is assumed to be independent, the probability follows the
product rule for independent events (if C and D are independent,
P(C,D) = P(C)P(D)).

For instance, if the sales data for a type of tea is, for the months
January to June is 10,21,29,19,35,42, then the probability of seeing
this sequence, purely based on what we know about strong com-
pany’s ability to improve month to month sale, is p · p · (1− p) · p · p,
since the changes were increase, increase, decrease, increase, and
increase, which simplifies to p4(1− p) (4 increases and 1 decrease).

To summarize, P(visualization(sales data)|company is strong)
can be computed as follows:

P(B|A) =P(increase|company is strong)(number of increase)

·(1−P(increase|company is strong))(number of decrease)

(2)
The same formulation can be used to compute the conditional

probability of P(visualization(sales data)|company is weak) (which
is P(B|A′) in Equation (1)). Together with P(A) and P(A′), we can
compute P(B) (the denominator of Equation (1)).

3.1 Measuring Priors
As noted earlier, one potential challenge in using Bayesian statistics
is accurately eliciting priors (i.e. determining the values for P(A)
and P(A′)). There has been recent research that explores technique
to elicit prior knowledge. Kim et al. proposed elicitation by explicit
self-explanation in text format and predicting the data before seeing
the data [18]. While these methods are worth experimenting, the
problem of elicitation may be avoided by directly setting the priors
and informing the participants of them. The challenge of this ap-
proach is that the participants might not be able to fully contextualize
and comprehend the meaning of these priors. While it is generally
known that people are inherently bad at understanding and calculat-
ing probabilities, important work in psychology have found that the
right representation, frequency format, could significantly improve
human comprehension of probabilities [8]. Using this knowledge,
we inform the users of the prior by describing the frequencies of
strong companies versus weak companies, as such 50 out of every
100 companies are strong companies.

For visualizations scenarios with real world data and existing
beliefs, it is not always to set the priors. In this case, the experiment
could ask the users directly. For instance, how many companies
currently in the market do you think qualifies as “strong companies”
per our definition out of 100?

In cases where it is difficult for the people to describe their priors
explicitly, there are other more involved research methods that could
elicit the priors passively. Transmission chains are one technique
to extract priors [2, 29]. By passing information from one person
to another, the original information in the input gets erased and the
latent biases surface, creating a stable end result that represents the
priors.

3.2 Sources of Biases
If we assume that Bayesian statistics could model human cognition
of data visualizations, then the differences between the analytical
results from the Bayesian model (e.g. the computed value of P(A|B))
and the user responses are due to biases. These biases could be either
introduced by the visualization, for which different visualizations



will have different effect on users’ responses, or inherent to the users’
thinking process, cognitive abilities, or previous experiences etc.,
which should remain unchanged regardless of the visualizations.

In this section we describe a few ways to extend the basic
Bayesian setup to potentially more accurately model user responses.
We will describe three different models as examples, but to prescribe
situations for which they are applicable, if at all, requires future
studies. This section is to inspire discussion and future research
ideas.

The first is prospect theory by Kahneman et al, which models the
phenomena that people are risk averse when sure gains are present,
and risk seeking when sure losses are present [16]. This could be
applied to cases when the visual analysis involves decisions that
might yield gain or losses. For instance, correctly identifying the
company to be strong could have investment return consequences.

The analytical form of incorporating prospect theory is found
in [9], where the linear model is

w(p) = a+(b−a) · p

and curved model

w(p) =
σ · pγ

σ · pγ +(1− p)γ

We could apply the weight function w on the probability reported.
That is to say, if the participant reported that the company is 0.9
likely to be strong, the actual belief p′ is calculated by solving
a+(a−b) · p′ = 0.9 (by the linear model). The parameters a,b (in
the linear model), or σ ,γ (in the curved model) could be computed
by fitting against the experiment data.

Second is when participants do not trust the data, either due to
data source validity, or how representative the data is, both of which
were suggested in [26] as factors which people have considered
when evaluating whether a visualization is persuasive. This could be
incorporated to the model by discounting the observations. For ex-
ample, instead of observing the original number of increase (in Equa-
tion 2), the participants observe effectively a discounted amount, say
a discount factor of θ of the original. This modifies Equation (2).
Concretely for example, the number of month-to-month increase
becomes (number of increase ·θ ). θ could by found by searching
through different values of 0 < θ < 1 for lowest error.

Third is when the participants have existing biases towards a
topic—i.e. inherent priors, which is also reported in [26] as “an-
choring to core beliefs”. In the running example, when we inform
the subjects the companies are 50% likely to be strong, it might
translate to 40% likely to be strong, if, for instance, the subject has
just read a news article about economic decline.

These three types of adjustment to the model are just examples
extensions to the Bayesian model, many more could be explored,
which is one advantage of the Bayesian model: the flexibility despite
simple formulation [13].

4 DEMONSTRATION EXPERIMENT

For a concrete end-to-end example, we present a between-subject
experiment that evaluates how two visualizations inform users dif-
ferently, one static and one interactive (as shown in Figures 1 and 2
respectively)1. We chose to compare the two visualizations because
while the interactive visualization may help people get a more intu-
itive sense of the changes, which has proven to have some positive
effect on understanding statistics [15], the static visualization show-
ing summary data as a line chart is more common, which could
make the task of estimating probabilities easier.

1The experiment could be viewed at https://www.gpaas.xyz/gpaas/
experiment/seabass/seabass_pilot/?workerId=demo If the experi-
ment does not progress, try changing the “workerId” to a random string in
the URL

Using the example of determining the strength of a company
discussed in Section 3, our experimental procedures are:

1. We inform the participants of the priors, e.g. “For this task, 50
out of every 100 companies are strong companies”, and show a
corresponding visualization that draws rectangles whose width
correspond to the percentage of strong companies, as shown in
the Figure 3.

2. The participants then view/interact with the visualization, ei-
ther the static one (Figure 1), or the interactive one (Figure 2).
In both cases, the participants see the month-to-month sales of
a fictitious tea company.

3. We ask the participants to predict the probability of this tea
company being a strong company. The participants would
enter their responses by dragging a slider valued from 0 to 100
(see Figure 3). The default value of the slider is set at the prior
given (i.e. 50%). Additionally we asked the participants to
report their confidence of their response on a 3-point Likert
scale.

The data is randomly generated but with the constraint that the
month-to-month sales change is within a small range so that one
randomly large increase does not cause unintentional bias. All
sales data are within 0 and 100 (with unit unspecified), and with no
correlation between the three products.

Since the experimental setting involves the mention of multiple
probabilities, we recognize that the instructions can be difficult to
follow for some participants. We therefore included three training
tasks in the experiment where we gave the participants feedback for
what the expected Bayesian posteriors were (without explaining the
mathematical calculations). Further studies are needed to ensure a
more robust and accurate prescription of the likelihood and prior in
similar experiments. One potential method is to provide the partic-
ipant with more examples of what it means to have the likelihood
and the probabilities, which may not be too far removed from real
life when experts gain experience via past events.

Figure 1: Static line chart visualization of each month’s result, each
line represents the product, with data over six months and 15 data
points total of month to month changes.

5 DEMONSTRATION EVALUATION

In this section we describe the methods for analyzing the participants’
responses to quantitatively measure how much change a visualization
causes in a participants’ beliefs. Note that the goal of this section is
primarily to illustrate how to use the model and show evidence for its
promise, and not focused on the actual implications on visualizations,
which requires more experimentation and analysis.

The analytical solution to the Bayes equation 1, i.e. the Bayesian
posterior, provides the unbiased baseline of what we expect the true
probability to be given the data. When the Bayesian posterior is
compared to the participants’ responses, the difference of the two
quantifies the bias. The comparison can be done in a variety of

https://www.gpaas.xyz/gpaas/experiment/seabass/seabass_pilot/?workerId=demo
https://www.gpaas.xyz/gpaas/experiment/seabass/seabass_pilot/?workerId=demo


Figure 2: Interactive bar chart visualization of each month’s result,
where as the subject hovers over the month the corresponding sales
information shows up. The subject could get an intuitive sense of
change by the bar height changes.

Figure 3: Experiment design overview, including the simple visualiza-
tion of the prior and the fixed conditional probability information, and
the response collection interface.

ways, but one simple method is to compute the average distance
of the participants’ responses to the Bayesian posterior. Besides
capturing the absolute signed bias, we could also aggregate the
signed bias, which emulates practices in prediction markets where
people’s beliefs are pooled [31]. Since the difference is signed, we
could gain insights into the direction of the bias—is the posterior
higher, or lower than expected.

In addition, correlating the participants’ responses and the
Bayesian posterior using Pearson’s r could evaluate how much of
the variance of the participant responses could be explained by the
Bayesian model—the higher the correlation, the more effective the
model is at describing and predicting the participants’ responses.
The correlation could be used to evaluate the effectiveness of differ-
ent extensions discussed in Section 3.2.

For the pilot demonstration experiment, we found that while indi-
vidual responses had varying degrees of error, on average 20%. The
Bayesian model explains about 60% of the variance (by Pearson’s r,
with p value of less than 1e-10), which suggests that the Bayesian
model is appropriate for this experiment. The average signed error
was close 0%, which is a rather surprising result, but consistent

with the effectiveness of the crowd in prediction market experiments
and other Bayesian cognition modeling experiments [12]. However
again the experiment is more for demonstration purposes and the
findings require more experimentation to be conclusive.

Using the bias measures, we could compare across different vi-
sualizations. In this pilot study, we found no significant difference
between the static and interactive visualization (p> 0.4,U = 11620).
However there was significant difference in terms of completion time
(p < 0.005,U = 9273), by only about 20%, where the total time in-
teractive visualization is 12.7 seconds, the median for static is 10
seconds.

One concern about the experiment is that people might not actu-
ally understand the priors we describe in the experiment. The results
show that conditioning on the same data types (characterized by the
total number of month-to-month increases), responses with the same
prior are different p < 0.1 from responses with a different prior—
this means that people must have used the prior to reason, because
otherwise the distributions would be indistinguishable, since other
factors are kept the same.

Figure 4 illustrates this point—the box plots in three different
colors, denoting different priors 0.1 for red, 0.5 for green and 0.1
for blue, are distributed differently given the same data observed. It
can be seen that given the same x-axis value (holding the amount
of evidence the same), that participants’ posteriors differ somewhat
consistently 2 with the bayesian theoretical posterior, illustrated by
the filled lines in Figure 4.
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Figure 4: A visualization of difference by the prior of the probability
of the company being “strong”, red is 0.9, green is 0.5, and blue is
0.1. The dashed lines show priors, the filled lines show the theoretical
Bayesian posteriors against the varying data observed (keeping like-
lihoods fixed), and the box plot of user responses, in comparison to
the filled lines of the theoretical posterior.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed to model cognition of information visu-
alization as Bayesian inference through a description of the model
and demonstration experiment. First, we presented the Bayesian
model for visual analytics and walked through an example of how
the model can be used to study the change in beliefs when using two
different visualizations. We then demonstrated the procedures for a
demonstration experiment and how to analyze the results.

The demonstration experiment shows one way to make use of
the Bayesian model to evaluate the differences between a static
visualization and an interactive one for how they shape the viewer’s
opinion about the underlying products.

2The noise/wide range between quartiles, especially around 2 and 7, may
be due to the small number of experiment subjects.



Similar experiments could be designed to evaluate the inferences
in experiments in Kim et al.’s recent work on visualizing the gap
of one’s prediction and reality by evaluating the posterior of the
category of data as opposed to recall [18], or to put a more quantitate
evaluation to Pandey et al.’s work on the persuasive power of data
visualization [26]. However more research is needed to apply the
Bayesian framework to less abstract settings with complex stimuli.

We hope that this work could inspire more quantitative evaluations
of cognitive bias in information visualization and modeling of human
cognition of information visualization.
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