A Quantum Approach To Cognitive Bias Modelling A Survey

J. Hahn¹ P. Weiser²

¹Research Group Geoinformation Vienna University of Technology

²Geoinformation Engineering ETH Zurich

DECISIVe Workshop, 2014

Quantum for Cognitive Bias

Vienna UT & ETH Zurich

Outline

1 Motivation

Quantum Cognition

2 Appropriate Map

Context dependent map to reduce bias

3 Summary & Outlook

Visual Quantum effects

Motivation	Appropriate Map	Summary & Outlook
●0000	0000	00
Quantum Cognition		

" "Rational" decision-making methods ... logic, mathematics, probability theory ... [are] incapable of solving the natural adaptive problems ..." [Cosmides & Tooby 1994 p.329]

Motivation	Appropriate Map	Summary & Outlook
●0000	0000	00
Quantum Cognition		

" "Rational" decision-making methods ... logic, mathematics, probability theory ... [are] incapable of solving the natural adaptive problems ..." [Cosmides & Tooby 1994 p.329]

"... the human mind is not worse than rational ... but may often be better than rational" [Cosmides & Tooby 1994 p.329]

Motivation	Appropriate Map	Summary & Outlook
●0000	0000	00
Quantum Cognition		

" "Rational" decision-making methods ... logic, mathematics, probability theory ... [are] incapable of solving the natural adaptive problems ..." [Cosmides & Tooby 1994 p.329]

"... the human mind is not worse than rational ... but may often be better than rational" [Cosmides & Tooby 1994 p.329]

"... suggests that biases often are not design flaws, but design features" [Haselton et al. 2005]

Motivation ●0000	Appropriate Map 0000	Summary & Outlook
Quantum Cognition		

" "Rational" decision-making methods ... logic, mathematics, probability theory ... [are] incapable of solving the natural adaptive problems ..." [Cosmides & Tooby 1994 p.329]

"... the human mind is not worse than rational ... but may often be better than rational" [Cosmides & Tooby 1994 p.329]

"... suggests that biases often are not design flaws, but design features" [Haselton et al. 2005]

- Who produces the bias?
 - the theory or people

Motivation ●0000	Appropriate Map 0000	Summary & Outlook
Quantum Cognition		

" "Rational" decision-making methods ... logic, mathematics, probability theory ... [are] incapable of solving the natural adaptive problems ..." [Cosmides & Tooby 1994 p.329]

"... the human mind is not worse than rational ... but may often be better than rational" [Cosmides & Tooby 1994 p.329]

"... suggests that biases often are not design flaws, but design features" [Haselton et al. 2005]

- Who produces the bias?
 - the theory or people
- Our solution: use another theory

What is Quantum Cognition?

- A field that uses formalisms of quantum mechanics to model cognitive phenomena
 - Interference effect [Townsend et al. 2000]
 - Order effect [Wang & Busemeyer 2012]
 - Disjunction effect [Tversky & Shafir 1992]
 - Conjunction effect ["Linda is a bank teller" Tversky & Kahneman, 1983]
 - Concept combination, Prototype theory [Rosch, Aerts & Gabora 2005]

Appropriate Map

Summary & Outlook

Quantum Cognition

Example - Superposition

(b) Two faces/ Vase

Figure : Bi-stable visualizations can be interpreted as in a superposition state: An observer is not able to perceive both interpretations simutaneouslly

Motivation ०००●੦	Appropriate Map 0000	Summary & Outlook
Quantum Cognition		

Motivation 000●0	Appropriate Map 0000	Summary & Outlook
Quantum Cognition		

Motivation 000●0	Appropriate Map	Summary & Outlook
Quantum Cognition		

Quantum for Cognitive Bias

Motivation	Appropriate Map	Summary & Outlook
○○○●○	0000	00
Quantum Cognition		

Motivation 000●0	Appropriate Map 0000	Summary & Outlook
Quantum Cognition		

Quantum for Cognitive Bias

Mathematics of Quantum Cognition

 $|b\rangle$ $|a\rangle$ Figure : 3 dimensional Hilbert space

Quantum for Cognitive Bias

Vienna UT & ETH Zurich

Motivation 00000	Appropriate Map ●000	Summary & Outlook
Context dependent map to reduce bias		

Prediction of an appropriate Map with a Hilbert Space Model

Include the SCOP in a map service to reduce cognitive biases

Quantum for Cognitive Bias

Vienna UT & ETH Zurich

A Hilbert Space Model for Concepts

presented by [Aerts and Gabora 2005a,b]

State Context Property (SCOP)

sets:

Σ = {p1, p2,...} representing the states a concept can assume
 M = {e1, e2, ..., f1, f2, ...} including contexts for a concept
 L = {a1, a2, ...} containing properties or features for a concept

functions:

- µ(q,e,p) calculates the transition probability from one state q
 to another state p under the influence of context e
- v(p,a) weights the importance of one property a in a particular state p

Motivation	Appropriate Map	Summary & Outlook
00000	0000	00

SCOP representation of the concept map

States of the map, set $\boldsymbol{\Sigma}$

- \widehat{p} map
- **p1** roadmap
- p2 hiking map
- p3 city map
- p4 nautical chart
- p5 ski runway map
- **p6** bicycling map

00000	Appropriate Map 0000	00
Context dependent map to reduce bias		

SCOP representation of the concept map

States of the map, set Σ	Layers of the map, set $\mathscr L$
$\widehat{oldsymbol{p}}$ map	a1 road
p1 roadmap	a2 lake
p2 hiking map	a3 buildings
p3 city map	a4 mountains
p4 nautical chart	a5 ski runs
p5 ski runway map	a6 bicycling lanes
p6 bicycling map	a7 hiking path
	a8 contour lines

Motivation	Appropriate Map	Summary & Outlook
00000	0000	00
<u> </u>		

state of the concept map

Context dependent map to reduce bias

Calculate the appropriate Map via context

Agent

I need a map.

calculations

Quantum for Cognitive Bias

Vienna UT & ETH Zurich

6 • • • • • • • • • • • • • • • • • • •		
00000	000	00
Motivation	Appropriate Map	Summary & Outlook

Calculate the appropriate Map via context

Agent

I need a map.

state of the concept map

map

calculations

•
$$|x_{\widehat{p}}\rangle = \sum_{u \in M} \frac{1}{\sqrt{1800}} |u\rangle$$

Quantum for Cognitive Bias

Motivation	Appropriate Map	Summary & Outlook
00000	0000	00

Calculate the appropriate Map via context

Agent

- I need a map.
- I plan a bicycle trip.
 - calculations

•
$$|x_{\widehat{p}}\rangle = \sum_{u \in M} \frac{1}{\sqrt{1800}} |u\rangle$$

state of the concept map

🛈 map

Motivation	Appropriate Map	Summary & Outlook
00000	0000	00
<u> </u>		

Calculate the appropriate Map via context

Agent

- I need a map.
- I plan a bicycle trip.

state of the concept map

- map
- 2 map for bicycling

calculations

•
$$|x_{\widehat{p}}\rangle = \sum_{u \in M} \frac{1}{\sqrt{1800}} |u\rangle$$

• $|x_{p_6}\rangle = \frac{P_{e_6}|x_{\widehat{p}}\rangle}{\sqrt{\langle x_{\widehat{p}}|P_{e_6}|x_{\widehat{p}}\rangle}} = \sum_{u \in e_6} \frac{1}{\sqrt{100}} |u\rangle$

Motivation	Appropriate Map	Summary & Outlook
00000	0000	00
<u> </u>		

Calculate the appropriate Map via context

Agent

- I need a map.
- I plan a bicycle trip.

state of the concept map

- map
- 2 map for bicycling

calculations

$$\begin{array}{l} \bullet \quad |x_{\widehat{p}}\rangle = \sum\limits_{u \in M} \frac{1}{\sqrt{1800}} |u\rangle \\ \bullet \quad |x_{p_6}\rangle = \frac{P_{e_6}|x_{\widehat{p}}\rangle}{\sqrt{\langle x_{\widehat{p}}|P_{e_6}|x_{\widehat{p}}\rangle}} = \sum\limits_{u \in e_6} \frac{1}{\sqrt{100}} |u\rangle \\ \bullet \quad \text{nautical map? } \mu\left(p_4, e_4, x_{p_6}\right) = \langle x_{p_6}|P_{e_4}|x_{p_6}\rangle = 0 \ \% \end{array}$$

Calculate the appropriate Map via context

Agent

- I need a map.
- I plan a bicycle trip.

state of the concept map

- map
- 2 map for bicycling

calculations

•
$$|x_{\widehat{p}}\rangle = \sum_{u \in M} \frac{1}{\sqrt{1800}} |u\rangle$$

• $|x_{p_6}\rangle = \frac{P_{e_6}|x_{\widehat{p}}\rangle}{\sqrt{\langle x_{\widehat{p}}|P_{e_6}|x_{\widehat{p}}\rangle}} = \sum_{u \in e_6} \frac{1}{\sqrt{100}} |u\rangle$

• bicycle map?
$$\mu(p_6, e6, x_{p_6}) = \langle x_{p_6} | P_{e6} | x_{p_6} \rangle = 0.88 \%$$

Vienna UT & ETH Zurich

Calculate the appropriate Map via context

Agent

- I need a map.
- I plan a bicycle trip.

state of the concept map

- map
- 2 map for bicycling

calculations

•
$$|x_{\widehat{p}}\rangle = \sum_{u \in M} \frac{1}{\sqrt{1800}} |u\rangle$$

• $|x_{p_6}\rangle = \frac{P_{e_6}|x_{\widehat{p}}\rangle}{\sqrt{\langle x_{\widehat{p}}|P_{e_6}|x_{\widehat{p}}\rangle}} = \sum_{u \in e_6} \frac{1}{\sqrt{100}} |u\rangle$

• bicycle map? $\mu(p_6, e6, x_{p_6}) = \langle x_{p_6} | P_{e6} | x_{p_6} \rangle = 0.88 \%$ • include roads in the map? $v(x_{p_6}, a_1) = 0.8 \%$

Motivation 00000	Appropriate Map 0000	Summary & Outlook ●○
Visual Quantum effects		

Is there a visual interference?

- hypothesis: visual double slit experiment
- evidence that simultaneous tasks can interfere [Pashler 1994]

part of a webpage

excluded because of copyright reasons

Is there a visual interference?

- hypothesis: visual double slit experiment
- evidence that simultaneous tasks can interfere [Pashler 1994]

part of a webpage

excluded because of copyright reasons

whole webpage

excluded because of copyright reasons

Motivation	Appropriate Map	Summary & Outlook
00000	0000	○●
Visual Quantum effects		

Summary

- Quantum cognition uses formalisms of quantum mechanics to model cognitive phenomena
- Reduce cognitive load with serving appropriate information
- Outlook
 - visual priming
 - visual interference
 - any suggestions?