**David Peebles** 

University of Huddersfield

November 8, 2014

Using visualisations prime example of 'embodied' cognition (Wilson, 2002).



Using visualisations prime example of 'embodied' cognition (Wilson, 2002).

• **Situated** in real-world environment. Inherently involves perception/action.



Using visualisations prime example of 'embodied' cognition (Wilson, 2002).

- **Situated** in real-world environment. Inherently involves perception/action.
- **Time pressured**. Under pressure of real-time interaction with environment.



Using visualisations prime example of 'embodied' cognition (Wilson, 2002).

- **Situated** in real-world environment. Inherently involves perception/action.
- **Time pressured**. Under pressure of real-time interaction with environment.
- Exploits task environment to reduce cognitive workload by holding, representing, and manipulating information. Knowledge in world combines with knowledge in head.



## The embodied cognition-task-artefact triad



#### • Interactive behaviour:

- Emerges from dynamic interaction of goal-directed, task-driven cognition/perception/action with designed task environment.
- A complex combination of bottom-up stimulus driven and top-down goal and knowledge driven processes.
- Makes little sense to consider and investigate cognition in isolation.

**Bias.** A systematic preference for a particular pattern of behaviour in a task environment.



**Bias.** A systematic preference for a particular pattern of behaviour in a task environment.

**Question:** How are preferences (and interpretations) created/shaped by the embodied cognition-task-artefact triad?



**Bias.** A systematic preference for a particular pattern of behaviour in a task environment.

**Question:** How are preferences (and interpretations) created/shaped by the embodied cognition-task-artefact triad?

#### Four sources of bias:

- Computational affordances
- Emergent/salient features
- Gestalt principles of perceptual organisation
- Adaptive behaviour



## Computational affordances (Peebles & Cheng, 2003)



- Informationally equivalent
- Computationally inequivalent.
- Require different procedures.





- "When *gold* is 4, what is the value of *silver*?
- "Which two months have the same values of silver and gold?

## Emergent/salient features



David Peebles (University of Huddersfield)

## Emergent features (Peebles, 2008)



- Tasks: *local* (1 feature) and *global* (all features) comparison.
- Accuracy and latency of comparison judgements affected by:
  - Representation used.
  - Value being compared.
  - Emergent features created by arrangements of values.

## Emergent features affect distance perception



## Gestalt principles (Ali & Peebles, 2013)

• Laws of perceptual organisation (e.g., proximity, similarity, continuity, connectedness, common fate) affect grouping of graphical elements.



- Line: Novices focus primarily on legend variable (connectedness and similarity).
- Bar: Novices' attention balanced between legend and x-axis variables.

# Using emergent features and Gestalt principles



(a) Experts learn emergent features for rapid pattern recognition.

(b) Knowledge of Gestalt principles can be used to design more effective representations (Ali & Peebles, 2013).

## Basic elements of visualisation behaviour

#### • Cognitive processes:

• Goal setting and monitoring, initiate visual search, retrieval from LTM, generating inferences, etc.

## Basic elements of visualisation behaviour

#### • Cognitive processes:

• Goal setting and monitoring, initiate visual search, retrieval from LTM, generating inferences, etc.

#### • Perceptual processes.

- Judgement of length, direction, area, position on common scale (Cleveland & McGill, 1984).
- Visual comparisons of length, colour, shape, quantity.

## Basic elements of visualisation behaviour

#### • Cognitive processes:

• Goal setting and monitoring, initiate visual search, retrieval from LTM, generating inferences, etc.

#### • Perceptual processes.

- Judgement of length, direction, area, position on common scale (Cleveland & McGill, 1984).
- Visual comparisons of length, colour, shape, quantity.

#### • Physical actions:

- Eye movement saccades and fixations, mouse clicks and cursor movements, finger taps and pinches etc.
- Interface manipulations: Selection/highlighting with mouse; dragging, realigning, rotating, deleting; zooming in and out

## Interactive routines

Basic cognitive, perceptual and motor operators combined into **interactive routines** that take between 0.3 to 1 second to execute:

- Direct attention to object and encode features/location.
- Move mouse cursor to graphical object and click on it (see CPM-GOMS model below; Gray & Boehm-Davis, 2000).



# Unit tasks and strategy selection

**Unit tasks:** Combinations of interactive routines that perform subtasks.

Typical execution time: between 3s and 30s.

- Select and visually mark subset of data.
- Locate variable value(s) according to some criterion (e.g., max, min, median etc.).



# Unit tasks and strategy selection

**Unit tasks:** Combinations of interactive routines that perform subtasks.

Typical execution time: between 3s and 30s.

- Select and visually mark subset of data.
- Locate variable value(s) according to some criterion (e.g., max, min, median etc.).

Strategies: Sequences of unit tasks.



# Adaptive behaviour

 Interactive routine changes reduce interaction cost & optimise control system resource allocation. *Milliseconds matter* (Gray & Boehm-Davis, 2000)



# Adaptive behaviour

- Interactive routine changes reduce interaction cost & optimise control system resource allocation. *Milliseconds matter* (Gray & Boehm-Davis, 2000)
- Ballard et al. (1995) increased information access cost from eye movement to head movement – users shifted from display based access to memory retrieval.





## Adaptation as a source of bias

#### Adoption and adaptation determined by:

- Cost structure of the task environment (i.e., how quick/easy is it to execute the task).
- The representational efficiency of the visualisation.
- History of success with the strategy.
- Adaptation typically beneath conscious awareness and deliberate control.

#### Do users always adapt to an optimal interaction?

• Not necessarily – only when local (interactive routine level) optimum coincides with global task level optimum (Fu & Gray, 2004).

# Suboptimal interaction and interpretation may result from strategy selection pressures resulting from unconscious choices made at the embodiment level.

# Summary

- Interpretation of data graphics can be shaped/biased by number of factors:
  - Visual and computational properties of the representation.
  - Adaptive behaviour of the user seeking to minimise effort.

#### • Research on simpler data graphics must be extended to:

- Larger and more complex data sets.
- Broader class of visualisations.
- Cover the increasing variety of interactions and manipulations that are being developed.
- Vital for design of most appropriate representations/task environments for different users and tasks and to reduce error.
- Important role for cognitive science theories and methods in this research (e.g., computational cognitive modelling)